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УДК 538.955

INFLUENCE OF THE SADDLE-SPLAY CONSTANT ON
THE DIRECTOR FIELD DISTRIBUTION IN STRONG

MAGNETIC FIELDS

c⃝ 2014 A.A. Kudreyko, R.N. Migranova,1 A.R. Khafizov2

The role of anchoring effects in thin nematic films confined between two
parallel plates was theoretically examined. The bulk and surface free energy
densities were expanded up to O(ε2) and the perturbated contributions were
calculated. It is shown that the minimum of the free energy corresponds to the
solution of the Euler-Lagrange equations and satisfies the Ericksen inequalities.
The identified bifurcation points can estimate the influence of the saddle-splay
constant k24 towards periodic perturbations of a director in the presence of
strong magnetic field.
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Introduction

Nematic liquid crystals (LCs) confined in restricted geometries are technologically
important and have been the subject of extensive experimental and theoretical research
for five decades. Fréedericksz transitions caused by an external electric or magnetic
field in nematic LCs have attracted attention since their discovery in 1933.

When the magnetic field is applied perpendicular to the uniformly aligned nematic,
confined between two parallel plates, above a certain threshold, the director is affected
on by deformations and tends to align along the field. The critical threshold of the
magnetic field in one constant approximation is inversly proportional to the thickness
of the nematic sample 2d, and is given by

Hc =
π

2d

√
k

χa
,

where χa is the anisotropy of the diamagnetic susceptibility, which is assumed a
positive number, and k is the elastic constant [1].

A surface term k24, which is often omitted represents elastic contribution to the
surface free energy that, originally, has been indicated as a part of the elastic energy
having the form of a divergence. This contribution – the so-called the saddle-splay
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term k24, which is important only for particular situations, in which a distortion has
a two- or three-dimensional structures [2, 3].

One of the recent theoretical results [4] in the one-constant approximation shows
that k24 causes instabilities if the ratio k24/k > 0.707. Another result from this study
is the suggestion of how to measure k24.

The results in ref. [4] are essentially limited to the particular case in which the
layer of nematic LC is infinite, and no proof that the distorted contributions of
the distribution of polar and azimuthal angles yield the minimum of free energy.
Hence, the study of possible mechanisms of interactions of the saddle-splay energy
and strong magnetic fields (H ≫ Hc) requires a quantitatively accurate description
of the instability that goes beyond these limitations.

In this work we report the theory of the interaction of the saddle-splay elastic
constant under the onset of periodic perturbations of a director in the presence of
strong magnetic field. Our theoretical model is based on the Oseen-Zocher-Frank
continuum theory of LCs. In the next Section we define the geometry of the problem
and introduce free energy. In Section 2. we obtain the bulk and surface free energies
in two-constant approximation. Then we determine bifurcation points by minimizing
free energy. In Section 3. we analyze the influence of the saddle-splay term on the
stability of the unperturbated state. In Section 3. we briefly outline the results of
our research and the perspectives on open problems.

1. Geometry of the problem and free energy
Nematic LCs are described by director n, which is a unit vector, characterising the

average orientation of molecules. The standart expression for the elastic free energy
associated with n is given by

Fel = 1
2

∫
V

dV {k11(divn)2 + k22(n · curln)2 + k33[n× curln]
2

−(k22 + k24) div [n× curln + (divn)n]} ,
(1)

where k11, k22, k33 and k24 are the splay, twist, bend and saddle-splay moduli
respectively. In view of Gauss’ theorem, the divergence terms only contribute to
the surface free energy density. To guarantee a stable configuration of nematic LC
in the absence of external fields, the saddle-splay constant must fulfill the Ericksen
inequalities [2]:

kii > 0 , |k24| 6 k22 , k22 + k24 6 2k11 , |k11 − k22 − k24| 6 k11. (2)

We assume that k11 = k33 = k and k24 ̸= 0, then equation (1) takes the form

Fel = 1
2

∫
V

dV {k(divn)2 + k22(n · curln)2 + k[n× curln]
2

−(k22 + k24) div [n× curln + (divn)n]} .
(3)

Consider one of the basic configurations of the director and the magnetic field for
the Fréedericksz transition (e.g. [3], p. 307). Let the distance in the bulk (see Fig. 1),
which is needed to orient the director along the applied magnetic field H = Hex be
expressed in the CGS system through the dimensionless coherence length

εθ =
1

d

√
k

χaH2
,

where d is the half-thickness of the layer and εθ ≪ 1.
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Fig. 1. Representation of the director n under the influence of the
magnetic field H in a cell of the thickness 2d

The magnetic field contribution to the elastic free energy is represented by the
functional

F = Fel −
χa
2

∫
V

(n,H)
2
dV ,

which yields the Euler equation [1, 2]

d2θ

dζ2
+ sin θ cos θ = 0 , (4)

where ζ : 2/εθ > ζ > 0 is the scaled coordinate, which is related with the space
coordinate −d < z < d as z = d− εθdζ, θ is the angle between the director and the
z-axis (see Fig. 1).

When ζ → 1/εθ, we suppose θ = π/2, (dθ/dζ)ζ→1/εθ = 0 and ρ · (dθ/dζ)ζ=0 =

= sin θ cos θ|ζ=0, where ρ ≡
√
kH2χa/Wa is the dimensioless parameter characterising

the relative strength of the magnetic field to the surface anchoring energy Wa. The
solution of equation (4) yields the function

θ(ζ) = arcsin

(
Ae2ζ − 1

Ae2ζ + 1

)
, (5)

where A(ρ) =
1 + ρ

1 − ρ
.

It is widely known that the saddle-splay constant contributes to the equations for
problems involving weak anchoring of the LC at the surface. Due to this reason, a
mathematical condition 0 < ρ < 1 must hold.
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2. Stability analysis
Supposing that the state (5) is linearly unstable, consider small perturbations

of the director n induced by the magnetic field under the assumption that the
configuration of the perturbations of the director in the yz plane is defined by

n = sin(θ + ψ) cosφ ex + sin(θ + ψ) sinφ ey + cos(θ + ψ) ez , (6)

where φ(y, z), ψ(y, z) are small O(ε) and periodic functions, i.e.

φ(y, z) = g(z) cos(qy), ψ(y, z) = f(z) sin(qy) , (7)

where q is the wavenumber.
The Taylor series expansion of the elastic and magnetic free energy up to O(ε2)

gives

f
(2)
b = 1

2 sin2θ

(
k
(
∂φ
∂y

)2
+ k22

(
∂φ
∂z

)2)
+

1
2

(
k sin2θ

(
∂ψ
∂z

)2
+ k22 cos2θ

(
∂ψ
∂z

)2
+ k22

(
∂ψ
∂y

)2)
+

(k22 − k)
[
sin2 θ ∂φ∂y

∂ψ
∂z + ψ2

2 cos 2θ
(
∂θ
∂z

)2]
+

1
2 (k22 − k) sin 2θ ∂θ∂z

(
φ∂ψ∂y − 2ψ ∂ψ∂z − 2ψ ∂φ∂y

)
−

χaH
2

2

(
ψ2 cos 2θ − φ2 sin2 θ

)
,

(8)

and the surface energy obtained from the Rapini-Papoular functional [5] yields

f (2)s = ψ2Wa

2
cos 2θ − (k22 + k24)φ sin2 θ

∂ψ

∂y
+ k24ψ

∂ψ

∂y
. (9)

Under the assumption that the field-induced distortions (7) depend only on ζ, the
configuration of the director can be found by solving the Euler-Lagrange equations.
The variational problem for f and g (7) written in terms of the scaled variable ζ
leads to the following system of differential equations:

γ
(
d2g
dζ2 + 8Ae2ζ

A2e4ζ−1
dg
dζ

)
− (γ − 1)

√
ω2
1 − 1

(
df
dζ −

8Ae2ζf
A2e4ζ−1

)
−gω2

1 = 0 ,
(10)

[
1
γ

(
Ae2ζ−1
Ae2ζ+1

)2
+ 4Ae2ζ

(Ae2ζ+1)2

]
d2f
dζ2 − f

(
ω2
2 − 8Ae2ζ

(Ae2ζ+1)2

)
+ 1

(Ae2ζ+1)2

[
20Ae2ζqAe

2ζ−1
Ae2ζ+1

g + q(Ae2ζ − 1)2 dgdζ

−12Ae2ζ
(

8A
(Ae2ζ+1)2

− 1
)
f + 8Ae2ζ

(
Ae2ζ−1
Ae2ζ+1

)2
f

+16Ae2ζ Ae
2ζ−1

Ae2ζ+1
df
dζ

](
1 − 1

γ

)
= 0 ,

(11)

where γ =
k22
k

, ω2
1 = 1 + q2ε2θd

2, ω2
2 =

1

γ
+ q2ε2θd

2. Equations (10,11) written in

terms of the one constant approximation will look identical with the corresponding
variational problem given in ref. [4].

The obtained equations do not have an analytical solution, and we will treat
(10,11) for the isotropic approximation k11 = k22 = k33, assuming lower and upper
boundaries. Then ω1 = ω2

∣∣
γ=1

, and consider a common value ω.
The boundary conditions for weak anchoring are due to the minimization of

the bulk and surface free energy terms. Hence, the influence of the surface on the
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equilibrium director field of the LC is represented by the boundary conditions

−
∂f

(2)
b

∂φ,ζ
+
∂f

(2)
s

∂φ

∣∣∣∣
ζ=0

= 0 , −
∂f

(2)
b

∂ψ,ζ
+
∂f

(2)
s

∂ψ

∣∣∣∣
ζ=0

= 0 (12)

or
gζ(0) = (1 + τ)

√
ω2 − 1f(0) ;

fζ(0) = −
(

1
ρ − 2ρ

)
f(0) + τ

√
ω2 − 1 g(0) ,

(13)

where τ = k24/k is the dimensionless saddle-splay modulus. To give a quantitative
estimation, we carried out further calculations for 2d = 40 · 10−4 cm, χa = 10−7,
H = 1.5 · 104 G, k = 10−6 dyn and Wa = 9 · 10−3 erg/cm2, then εθ ≃ 0.1 and ζ ≃ 10.
Likewise, the second pair of the boundary conditions is given by

∂f
(2)
b

∂φ,ζ
+
∂f

(2)
s

∂φ

∣∣∣∣
ζ=10

= 0 ,
∂f

(2)
b

∂ψ,ζ
+
∂f

(2)
s

∂ψ

∣∣∣∣
ζ=10

= 0 (14)

or
gζ(10) = −(1 + τ)

√
ω2 − 1f(10) ;

fζ(10) = 1
ρf(10) + τ

√
ω2 − 1 g(10) .

(15)

With the aid of a computer algebra system, we obtain the distribution of
perturbations for the polar and azimuthal angles

f(ζ) = C1
eωζ(ω+1+Ae2ζ(ω−1))

Ae2ζ+1
+ C2

e−ωζ(ω−1+Ae2ζ(ω+1))
Ae2ζ+1

,

g(ζ) = C3
eωζ(ω+1+Ae2ζ(ω−1))

Ae2ζ−1 + C4
e−ωζ(ω−1+Ae2ζ(ω+1))

Ae2ζ−1 ,
(16)

where the integration constants Ci must satisfy the boundary conditions (13) and
(15). The resulting equations represent the system of linear homogeneous equations

4∑
i,j=1

Mi,jCj = 0, which has a non-trivial solution if

det M = 0 . (17)

By computing the determinant of M, we get an implicit equation with respect to
ω, τ and ρ. It is clear from (2) that (17) is regarded to the case τ 6 1.

In order to test the model, it is necessary to clarify if solutions (16) of the
Euler-Lagrange equations yield minimum energy with respect to the absence of
perturbations (6). Therefore, if the sum of the bulk and surface free energy terms
with the supposed perturbations (6) is less than the sum without perturbations, i.e.
φ(y, z) = ψ(y, z) = 0 (stable state), then the supposed perturbations exist. Thus, the
condition

λ∫
0

d∫
0

f
(2)
b dzdy +

λ∫
0

f (2)s dy

∣∣∣∣
z=d

< 0 (18)

must hold. If we suppose that Ci/Cj ≃ 1, where i, j = 1 . . . 4, then the substitution
of the solutions of the Euler-Lagrange equations (16) to (18) yields the expression
F

(2)
b + F

(2)
s = G(τ, d, λ,Wa,H, χa) < 0, where λ is the wavelength of the periodic

distortions of the director along the y axis. Using the parameters given above, we
can plot the condition of the existence of perturbations (see Fig. 2).

For a boundary case when H ' Hc, periodic distortions of the director are possible
if |τ | ≫ 1, which violates the Ericksen inequalities. It is also easy to challenge the
model on the stability of with respect to Ci/Cj ≃ 0.1 . . . 10, and the corresponding
results do fulfill conditions (2).
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Fig. 2. Condition for the existence of perturbations in strong magnetic
field. The area below the line corresponds to F

(2)
b + F

(2)
s < 0

3. Results and discussion

It is clear that for φ(y, z) = ψ(y, z) = 0, then f
(2)
s = 0 . Therefore, the saddle-splay

term does not contribute to the free energy for configurations in which the director
is constant within a plane. The torsional strains considered here are two-dimensional,
and so the contribution of k24 to f

(2)
s is reasonable.

The state for ω < 1 can not be achieved because it corresponds to complex
wavenumbers q, i.e. ω2 = 1 + q2ε2θd

2.
Each curve in Figs. 3 divides the parametric space ρ − ω into two regions and

the instability threshold is determined by the matrix M. In view of Fig. 3a, the
minimum of each curve represents the critical values of the dimensionless parameter
ρc. The instability threshold between the stable state detM > 0 (below each curve)
and periodically distorted state detM < 0 occurs in the vicinity of the glass surface
for 0.53 6 ρc 6 0.578.

The role of the saddle-splay term within the present problem statement can be
seen by letting k24 → k, (τ → 1), then the stability diagram (17) grows faster, and
means that wavelength of perturbations λ increases (Fig. 3b).

The obtained results show that for the determination of the saddle-splay constant
one need to measure the distance 2d between two plates, elastic constants and
by changing the magnetic field, observe periodic perturbations, and measure the
wavelength at the plate surface. The determination of ω and τ can give a value of the
saddle-splay constant with a certain error because the presented theoretical results
are based on the one constant approximation.

Conclusions

In this paper we have studied the saddle-splay term, which is represented in the
Frank free energy (1) and influences on the surface free energy. Periodic perturbations
of the director yield deviation from the base state (5) when the saddle-splay energy
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Fig. 3. Stability diagrams (detM = 0) for various values of the saddle-
splay ratio τ = k24/k

becomes important. This issue becomes important only for high magnetic fields, i.e.
H & 104 G, which are difficult to achieve in many laboratories. The similarity of the
effects induced by magnetic fields and electric fields shows that this effect can also
be viewed in the electric field with ratio E =

√
4πχa/εaH, where εa = 0.1 is the

dielectric anisotropy. Thus, the behavior of LCs in magnetic field 104 G is equivalent
to electric field with strength E = 35.4 V/cm.

Likewise in [4], this paper contributes to the theory of the surface terms on the
periodic Fréedericksz transition. However, the analysis performed in the present paper
has shown that there is no low threshold for τ when the bifurcation occurs in the
layer of nematic LC with a finite thickness. Moreover, the critical values of parameter
ρc satisfy the range criterion 0.53 6 ρc 6 0.578.

The differential equations (10,11) written in terms of the two-constant
approximation can give more accurate results at the expense of algorithmic
complexity. In particular, the solution of the variational problem will cause two wave
vectors and more complex boundary conditions.

Finally, we remark that the experimental description of the boundary orientational
relaxation of the director caused by k24 modulus requires the study in optical
transmittance of aligned nematic liquid crystals [6]. The authors will continue to treat
the problem in this direction.
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